Forelimb spike regeneration in Xenopus laevis: Testing for adaptiveness.
نویسنده
چکیده
Experiments were designed to test adaptability of forelimb spike regenerates in Xenopus laevis froglets. The results show that when amputation is at the radius/ulna level, regeneration occurs in 100% of the cases and a single spike of cartilage is the result. The spike regenerates originating from radius/ulna level amputations can be used for feeding and froglet growth is only minimally compromised by the spike. The spike grows in length as the froglet body grows and thus is in homeostasis with the body. The spike develops nuptial pad tissue in reproductively mature males and is occasionally molted, indicating responsiveness to gonadal and thyroid hormones. Finally, and most important, the spike can be used for amplexus and successful mating. In contrast, spikes originating from humerus level amputations were considerably shorter and regeneration from that limb level was less frequent. When amputation was at the body wall regeneration did not occur.
منابع مشابه
Analysis of gene expressions during Xenopus forelimb regeneration.
Xenopus laevis can regenerate an amputated limb completely at early limb bud stages, but the metamorphosed froglet gradually loses this capacity and can regenerate only a spike-like structure. We show that the spike formation in a Xenopus froglet is nerve dependent as is limb regeneration in urodeles, since denervation concomitant with amputation is sufficient to inhibit the initiation of blast...
متن کاملEffects of radius--ulna removal on forelimb regeneration in Xenopus laevis froglets.
Regeneration of boneless amputated forearms of adult newts was found to progress at a rate and to a degree comparable to amputated control limbs in which stump bones were not removed. In contrast, regeneration of boneless amputated Xenopus froglet forearms was significantly delayed and did not occur until two to three weeks following amputation. This is in comparison with the initiation of dist...
متن کاملFunctional joint regeneration is achieved using reintegration mechanism in Xenopus laevis
A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a "spike." Previously we reported that the reintegration mec...
متن کاملBeyond early development: Xenopus as an emerging model for the study of regenerative mechanisms.
While Xenopus is a well-known model system for early vertebrate development, in recent years, it has also emerged as a leading model for regeneration research. As an anuran amphibian, Xenopus laevis can regenerate the larval tail and limb by means of the formation of a proliferating blastema, the lens of the eye by transdifferentiation of nearby tissues, and also exhibits a partial regeneration...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental zoology. Part A, Comparative experimental biology
دوره 301 2 شماره
صفحات -
تاریخ انتشار 2004